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Federated Learning and Security Issues
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✓Mitigate data silo issues

✓Enable training of ML models 
on diverse datasets

The decentralized nature of FL makes 
it susceptible to client-side poisoning 
attacks and hinder FL’s development 
and real-world application.

Research scope: this work focus on the 
security perspective of FL framework aim 
to evaluating the robustness of existing 
FL frameworks.
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Problem Statement
• SOTA robust FL framework: Federated Ranking Learning (FRL)  [1]
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[1] Mozaffari, Hamid, Virat Shejwalkar, and Amir Houmansadr.  "Every vote counts: Ranking-Based training of
 federated learning to resist poisoning attacks." 32nd USENIX security symposium (USENIX Security 23). 2023.
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Problem Statement
• Why is it robust against client-side poisoning attacks?

• Ranking format narrows the potential space for malicious updates from an infinite 
range to n!, effectively bounding the adversary’s damage within a defined budget, 
e.g., (n-1).

• Server-side majority voting prevents malicious clients from making significant 
modifications to the global model, as each client only has a single vote.
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Research Motivation  

How robust is FRL?

Is there any vulnerability inside this framework? 5

Attack impact:
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Our work
• We conduct the first systematic analysis of FRL's robustness, 

uncovering a critical vulnerability within the framework. 

• Based on the results of the analysis, we design and implement a new 
attack (VEM) that targets and effectively manipulates the vulnerable 
edges. 

• Extensive experiments across different network architectures and 
datasets demonstrate that our VEM significantly outperforms SOTA 
attacks.
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Overall Framework
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Vulnerable Edges Identification
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• If the importance difference between 
edge and the selection boundary is 
smaller than the maximum damage the 
adversary can cause in one round, we 
call the that edge a vulnerable edge.
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Optimization
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• Overall objective: The global model's importance of those vulnerable 
edges after attack deviates significantly from their original values.

• Challenges: The optimization function is not continuous, so it cannot 
be solved directly.  
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Main Results 

Comparison with the State-of-the-art Attacks under different defenses.

It achieves 53.23% attack impact and is 3.7x more impactful than others.
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Ablation study 

Impact of non-IID degree

Impact of the percentage of malicious clients
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Discussion and Further Work
• Investigate targeted poisoning attacks under ranking-based FL.

• Certified robustness evaluation.

• Design more robust FL framework with less information sharing.
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Thank You!
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