

Not All Edges are Equally Robust: Evaluating the Robustness of Ranking-Based Federated Learning

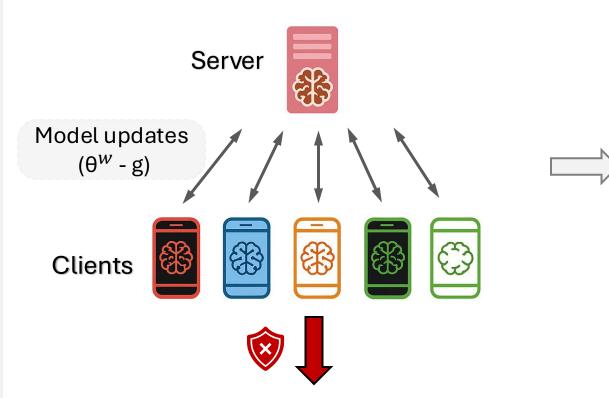
Zirui Gong¹, Yanjun Zhang², Leo Yu Zhang¹, Zhaoxi Zhang^{2,1}, Yong Xiang³, Shirui Pan¹

¹ Griffith University ² University of Technology Sydney ³ Deakin University

IEEE S&P

Contact: zirui.gong@griffithuni.edu.au

Federated Learning and Security Issues

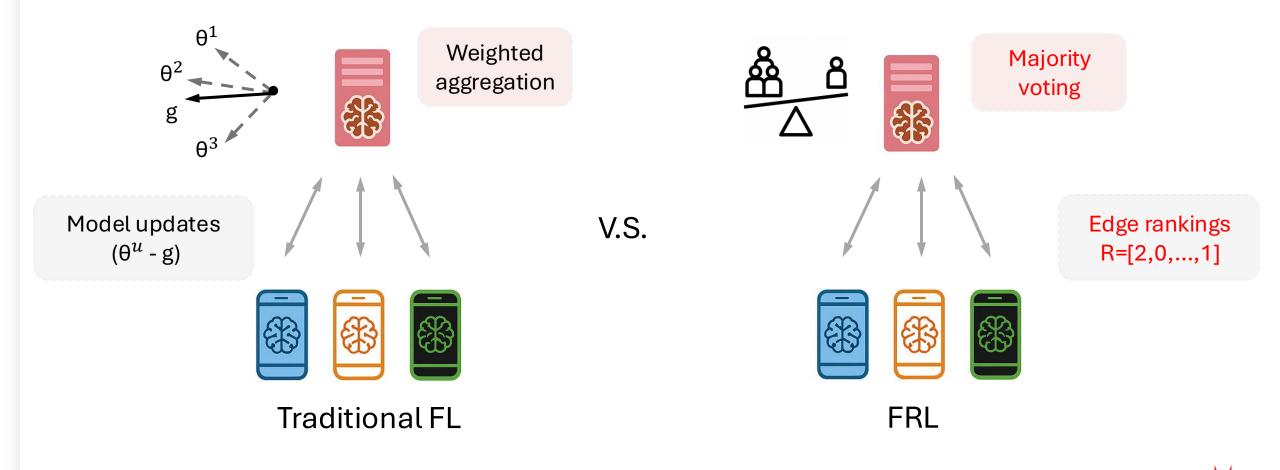


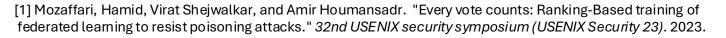
- ✓ Mitigate data silo issues
- ✓ Enable training of ML models on diverse datasets

The decentralized nature of FL makes it susceptible to client-side poisoning attacks and hinder FL's development and real-world application. Research scope: this work focus on the security perspective of FL framework aim to evaluating the robustness of existing FL frameworks.

Problem Statement

• SOTA robust FL framework: Federated Ranking Learning (FRL)^[1]



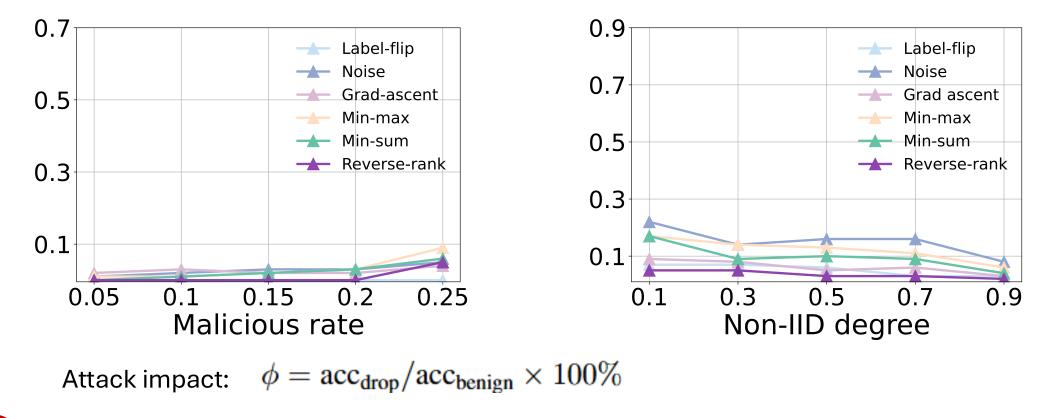


Problem Statement

- Why is it robust against client-side poisoning attacks?
 - Ranking format narrows the potential space for malicious updates from an infinite range to n!, effectively bounding the adversary's damage within a defined budget, e.g., (n-1).
 - Server-side majority voting prevents malicious clients from making significant modifications to the global model, as each client only has a single vote.

Research Motivation

How robust is FRL?

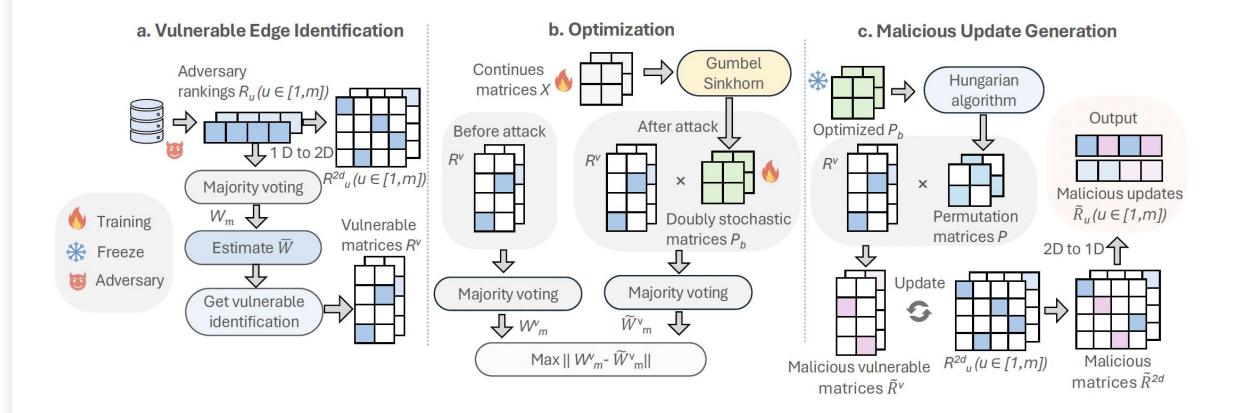


Is there any vulnerability inside this framework?

Our work

- We conduct the first systematic analysis of FRL's robustness, uncovering a critical vulnerability within the framework.
- Based on the results of the analysis, we design and implement a new attack (VEM) that targets and effectively manipulates the vulnerable edges.
- Extensive experiments across different network architectures and datasets demonstrate that our VEM significantly outperforms SOTA attacks.

Overall Framework



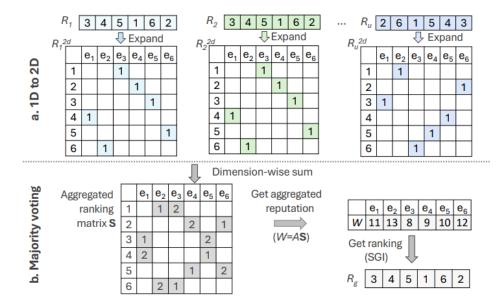
Vulnerable Edges Identification

Definition 1 (Permutation Matrix). Given a permutation R of n elements, the corresponding permutation matrix R^{2d} is an $n \times n$ matrix defined as follows:

$$R^{2d}[i,j] = \begin{cases} 1 & \text{if } R[i] = j, \\ 0 & \text{otherwise.} \end{cases}$$
(2)

In R^{2d} , the column *j* indicates the edge ID, and the row *i* indicates the *reputation*. For instance, as shown in Fig.

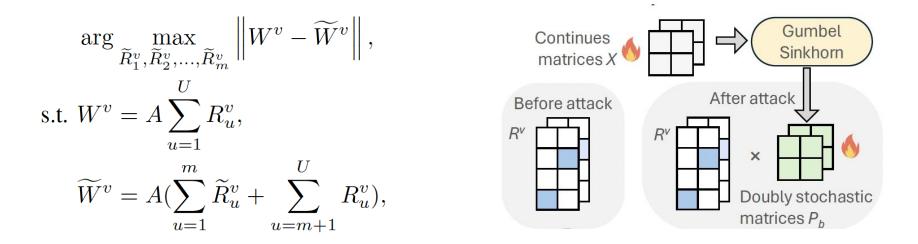
• If the importance difference between edge and the selection boundary is smaller than the maximum damage the adversary can cause in one round, we call the that edge a vulnerable edge.



Theorem 1. Give the aggregated reputation of U - mbenign users, i.e., $\overline{W} = [\overline{w}_1, \overline{w}_2, \dots, \overline{w}_n]$, the reputation of a vulnerable edge e_v is bounded by $\overline{w}_{\max} - m(a_n - a_1) < \overline{w}_v < \overline{w}_{\min} + m(a_n - a_1)$, (5) where $\overline{w}_{\min} = \min(\overline{W}^{in})$ and $\overline{w}_{\max} = \max(\overline{W}^{out})$.

Optimization

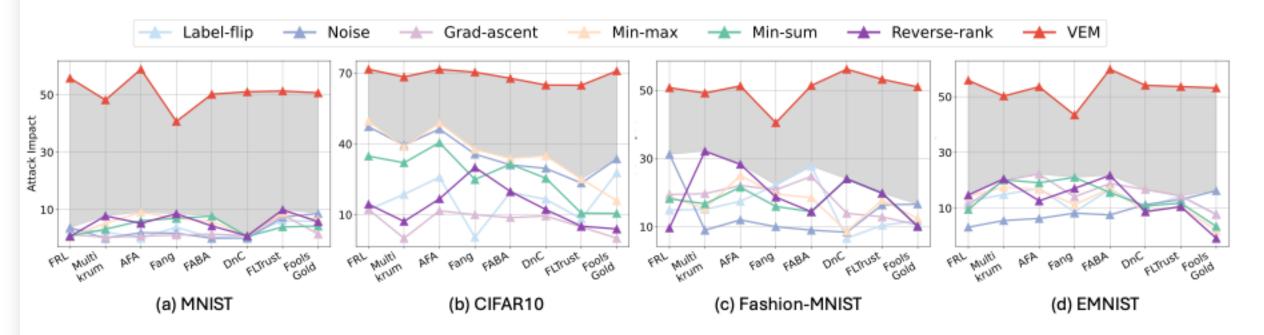
• Overall objective: The global model's importance of those vulnerable edges after attack deviates significantly from their original values.



• Challenges: The optimization function is not continuous, so it cannot be solved directly.

Main Results

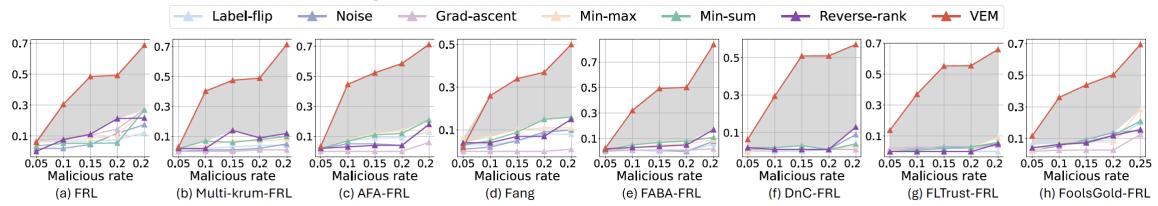
Comparison with the State-of-the-art Attacks under different defenses.



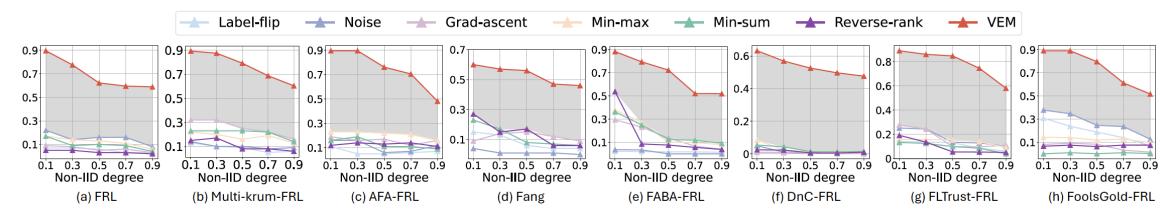
It achieves 53.23% attack impact and is 3.7x more impactful than others.

Ablation study

Impact of the percentage of malicious clients



Impact of non-IID degree



Discussion and Further Work

- Investigate targeted poisoning attacks under ranking-based FL.
- Certified robustness evaluation.
- Design more robust FL framework with less information sharing.

Thank You!

SRIFFITH UNIVERSITY

Paper

Linkedin